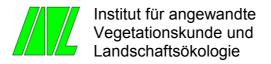
Rainer Cezanne & Sylvain Hodvina

Zoologischer Beitrag: Gerd Rausch

Grunddatenerhebung zu Monitoring und Management des

FFH-Gebietes


Kalkberg bei Weißenborn

5122-302

IM AUFTRAG DES REGIERUNGSPRÄSIDIUM KASSEL

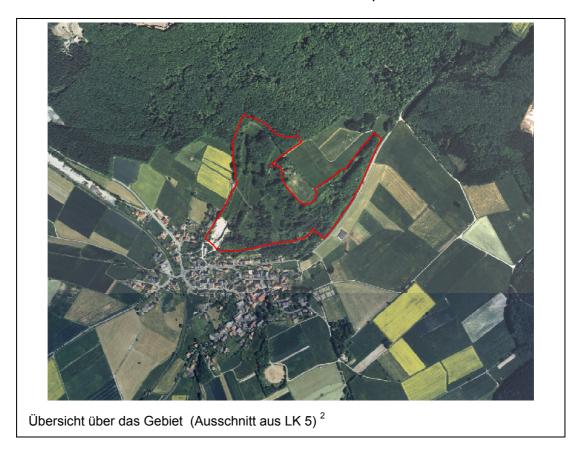
Darmstadt, November 2007

Version vom 29. April 2008

Inhalt

1	Aufgabenstellung	3		
2	Einführung in das Untersuchungsgebiet	5		
2 Einführung in das Untersuchungsgebiet				
2.2	Aussagen der FFH-Gebietsmeldung und Bedeutung des Untersuchungs-			
	gebietes	9		
	· · · · · · · · · · · · · · · · · · ·			
	5			
_				
_	· · · · · · · · · · · · · · · · · · ·			
_				
-				
-				
_		. 17		
3.2				
	,			
_				
_				
	· · · · · · · · · · · · · · · · · · ·			
	3			
_				
-				
	• • • • • • • • • • • • • • • • • • •			
	1 Geographische Lage, Klima, Entstehung des Gebietes 2 Aussagen der FFH-Gebietsmeldung und Bedeutung des Untersuchungsgebietes 3 FFH-Lebensraumtypen (LRT) 4 6212 Submediterraner Halbtrockenrasen (Mesobromion) 5 Fauna (Leit-, Ziel, Problemarten) 7 Fauna (Leit-, Ziel, Problemarten) 7 Habitatstrukturen (inkl. abiotische Parameter) 8 Beeinträchtigungen und Störungen 9 Beeinträchtigungen und Störungen 9 Bewertung des Erhaltungszustandes der LRT 9 Schwellenwerte 9 G510 Magere Flachland-Mähwiesen (Alopecurus pratensis, Sanguisorba officinalis) 9 Habitatstrukturen (inkl. abiotische Parameter) 9 Habitatstrukturen (inkl. abiotische Parameter) 9 Habitatstrukturen (inkl. abiotische Parameter) 9 Beeinträchtigungen und Störungen 9 Beeinträchtigungen und Bewirtschaftung			
_				
	· · · · · · · · · · · · · · · · · · ·			
	3			
_				
_				
	· · · · · · · · · · · · · · · · · · ·	•		
	5			
ა.ხ.	b beeintrachtigungen und Storungen	. ∠ხ		

3.5. 3.5.	5 5	26 26
0.0.	7 Conwellenworte	20
4 4.1	Arten (FFH-Richtlinie, Vogelschutz-Richtlinie)FFH-Anhang II-Arten	27
	FFH-Anhang IV-Arten	
	Sonstige bemerkenswerte Arten	
5	Biotoptypen und Kontaktbiotope	
	Bemerkenswerte, nicht FFH-relevante Biotoptypen	
5.2	Kontaktbiotope des FFH-Gebietes	28
6	Gesamtbewertung	
	Vergleich der aktuellen Ergebnisse mit den Daten der Gebietsmeldung	
6.2	Vorschläge zur Gebietsabgrenzung	30
	Leitbilder, Erhaltungsziele	
	Leitbilder	
	Erhaltungsziele	
	1 Erhaltungsziele aus der NATURA-2000-Verordnung	
1 .2.	2 Voltaligige Efficientigsziele Staffd 1. 1. 2000	51
8.	Erhaltungspflege, Nutzung und Bewirtschaftung zur Sicherung und Entwickluten FFH-LRT und -Arten	
8.1	Nutzung und Bewirtschaftung, Vorschläge zur Erhaltungspflege	
	Vorschläge zu Entwicklungsmaßnahmen	
9.	Prognose zur Gebietsentwicklung	36
10.	Anregungen zum Gebiet	37
11.	Literatur	38
12.	Anhang	40
12.		
12.2	•	
12.3		_
12.4	Gesamtliste bemerkenswerter Tier- und Pflanzenarten	40



1 Aufgabenstellung

Das Gebiet "Kalkberg bei Weißenborn" (Gebietsnummer 5122-302 – Gebietstyp G ¹) wurde wegen seiner Vorkommen von Halbtrockenrasen auf Muschelkalk mit Vorkommen von Orchideen für das Schutzgebietsnetz NATU-RA 2000 ausgewählt.

Im Rahmen der Grunddatenerhebung als Grundlage für die Schutzgebietsausweisung, den mittelfristigen Maßnahmenplan und das Monitoring sollen das Gebiet, seine Lebensraumtypen und relevanten Pflanzen- und Tierarten beschrieben und bewertet werden. Dazu ist der aktuelle Zustand der vorhandenen Lebensraumtypen in Ausdehnung und Erhaltungszustand zu erfassen und es sind Maßnahmen als Grundlage für mittelfristige Maßnahmenpläne vorzuschlagen (Berichtspflicht der FFH-Richtlinie im engeren Sinne).

Die Geländearbeiten wurden von Mitte Mai bis Ende August durchgeführt, die Vorlage einer Entwurfsversion (Text und Karten) erfolgte zum 1. Oktober 2007. Die Präsentation im Gelände fand am 22. April 2008 statt.

FFH-LRT: Beauftragt war der im Standarddatenbogen genannten LRT 6210. Darüberhinaus sind im Gebiet vertreten die im Rahmen der Grunddatener-

Gebietstyp G: FFH-Gebietsvorschlag, der Teil eines Vogelschutzrichtliniengebietes (VR-Gebiet) ist

Datengrundlage: ATKIS® Digitales Orthophoto 5 (DOP5), mit Genehmigung des Hessischen Landesamtes für Bodenmanagement und Geoinformation (HLBG)

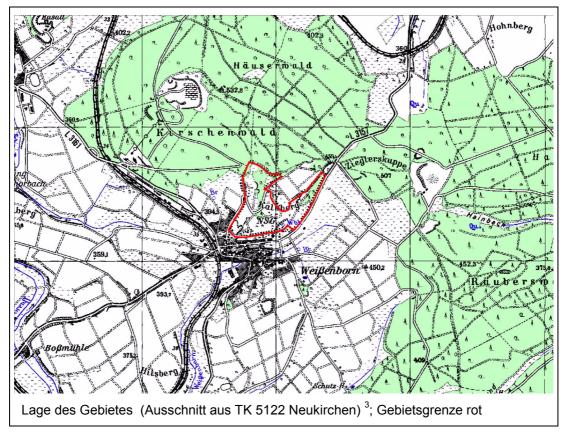
hebung festgestellten LRT 6510 (Glatthaferwiesen), *8160 (Kalk-Schutthalden), 9130 (Waldmeister-Buchenwald) und 9150 (Orchideen-Buchenwald).

FFH-Anhangsarten: Aus dem Gebiet sind keine Anhangs-Arten bekannt.

Vegetation: Für das Monitoring der im Gebiet vertretenen Lebensraumtypen sollten insgesamt 8 Dauerbeobachtungsflächen eingerichtet, vegetationskundlich bearbeitet und dokumentiert werden. Dazu kommen 2 Vegetationsaufnahmen im Orchideen-Buchenwald.

Flora: Es waren keine Untersuchungen zu Arten beauftragt.

Fauna: Im Rahmen der Grunddatenerhebung wurden Untersuchungen der Heuschreckenfauna zur Bewertung der Offenland-Lebensraumtypen 6210 und 6510 beauftragt.



2 Einführung in das Untersuchungsgebiet

2.1 Geographische Lage, Klima, Entstehung des Gebietes

Gebiet	
Kalkberg bei Weißenborn	5122-302
Größe	18,5054 ha
Gebietstyp	G

Das Gebiet liegt unmittelbar nordöstlich des Ortsteils Weißenborn in der Gemeinde Ottrau. Es besteht aus dem deutlich aus der Umgebung herausragenden Unterhang des Kirschenwaldes. Das stark gekammerte Gebiet weist zahlreiche Heckenstrukturen und Kleinstwälder auf, zwischen denen sich (im Untersuchungszeitraum) ungenutzte Halbtrockenrasen und gemähte Frischwiesen ausbreiten.

Das Gelände ist vor allem auf der Südostseite recht steil und steigt von etwa 410 m ü. NN am Südwestrand auf bis zu 480 m ü. NN im Norden an.

Die Umgebung des Gebietes ist weithin von Buntsandstein bedeckt, in dem in südwest-nordöstlicher Richtung der Oberaulaer Graben eingebettet ist mit

Datengrundlage: Topographische Karte 1:25000 (TK25), mit Genehmigung des Hessischen Landesamtes für Bodenmanagement und Geoinformation (HLBG)

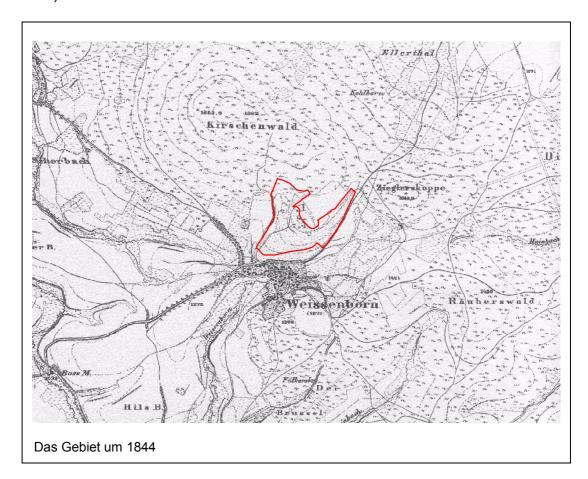
Resten einzelner Muschelkalkschollen, deren südwestlichste bei Ottrau zu finden sind. Diese geologische Besonderheit bedingt, dass das gesamte Gebiet von mehr oder weniger durchlässigen Kalkscherben-Böden bedeckt ist, die als Verwitterungsprodukt des anstehenden (unteren) Muschelkalks entstehen und als Bodentyp neben Syrosem vor allem Rendzinen (von flachgründiger Mullrendzina bis zu Braunerde-Rendzina) liefern. Im Unterhang auf der Südostseite finden sich auf muschelkalküberlagertem (oberem) Buntsandstein auch Braunerden. Dazu gibt es im Norden noch Einflüsse der im Kirschenwald vorhandenen tertiären Basaltdecke in Form von mehr oder minder großen Blöcken im Wald. Der Kalkberg stellt sich somit als eine Insel basenreicher Böden mit entsprechender Vegetation inmitten weithin saurer Böden dar.

Geographische Lage		Schlüsselzahl	
Land	Hessen	06	
Regierungsbezirk	Kassel	06.6	
Kreis	Schwalm-Eder-Kreis	06.634	
Gemeinde	Ottrau	634.020	
Gemarkung	Weißenborn	2078	
Topographische Karte	5122 Neukirchen		
Quadrant	41		
Länge	9° 26′ 05" O – 9° 26′ 42" O		
Breite	50° 49' 34" N – 50° 49' 49" N		
Höhenlage	410 – 480 m ü. NN		

Klima ⁴	
∅ Temperatur Januar	-2 °C – -1 °C
Ø Temperatur Juli	15 °C – 16 °C
Ø Temperatur Jahr	7 °C – 8 °C
Δ Temperatur Jahr	17 °C – 17,5 °C
Ø Beginn Temperaturmittel 5 °C	30.III – 10.IV
Ø Ende Temperaturmittel 5 °C	20.X – 30.X
Ø Dauer Temperaturmittel 5 °C	200 – 210 Tage
Ø Beginn Temperaturmittel 10 °C	10.V – 20.V
Ø Ende Temperaturmittel 10 °C	20.IX – 30.IX
Ø Dauer Temperaturmittel 10 °C	130 – 140 Tage
	100 – 120 Tage
Ø Niederschlag Vegetationsperiode	200 – 220 mm
∅ Niederschlag Jahr	750 – 800 mm

Datengrundlage: Deutscher Wetterdienst in der US-Zone 1950: Klima-Atlas von Hessen. Bad Kissingen.

Naturräumliche Zuordnung


FFH-Naturraum D47 Osthessisches Bergland, Vogelsberg und Rhön

Haupteinheitengruppe 35 Osthessisches Bergland
Haupteinheit 355 Fulda-Haune-Tafelland
Untereinheit 355.0 Ottrauer Bergland
Haupteinheit 356 Knüll-Hochland

Untereinheit 356.0 Westliches Knüllvorland

Entstehung des Gebietes

Im Gegensatz zu Ottrau, das schon im frühen Mittelalter erwähnt wird (Schenkung an das Kloster Hersfeld um 780), ist Weißenborn erst ab dem Spätmittelalter (1307 "Wisenburn") bezeugt. Seit dem 14. Jahrhundert dürfte also die unmittelbare Ortsumgebung gerodet gewesen sein, mit Ackerflächen auf den weniger stark geneigten, tiefgründigeren Böden und Grünland in den Auen sowie auf den flachgründigen Kalkböden. Diesen Zustand vermittelt auch die historische Karte aus der Mitte des 19. Jahrhunderts (Ausschnitt aus der "Niveau-Karte des Kurfürstenthum Hessen, Blatt 64 Neukirchen", 1844).

Eine Flächenbilanz für die Zeit um 1844 ergibt folgende Nutzungen:

Nutzungsart	Fläche	Anteil
Laubwald	2,7404 ha	14,81 %
Grünland	12,9300 ha	69,87 %
Acker	2,8350 ha	15,32 %
Gesamt	18,5054 ha	100,00 %

2007

Wald fand sich seinerzeit nur im untersten Kirschenwald, also am äußersten Nordwestrand des Untersuchungsgebietes, alle übrigen Flächen wurden dagegen landwirtschaftlich genutzt. Ackerflächen spielten keine große Rolle und nahmen nur Verebnungsbereiche am West- und Südostrand ein sowie auf der Höhe im Nordosten. Das gesamte restliche Gebiet weist die Signatur für mäßig frisches bis trockenes Grünland auf und dürfte als Weideland genutzt worden sein, aufgrund der Besitzverhältnisse (Gemeinde) wohl als Allmende.

Noch bis zum Ende der 1980er Jahre lagen in den angegebenen Bereichen Äcker, doch änderte sich der Flächenanteil der Grünlandnutzung erheblich. Zum Teil gingen Flächen durch die Anlage von Steinbrüchen am Südrand verloren, andere wiederum änderten ihr Erscheinungsbild durch spontane Wiederbewaldung nach Nutzungsaufgabe. Während auf der historischen Karte Strukturelemente wie Hecken nur im Bereich des heutigen Sportplatzes im Nordosten zu erkennen sind, bilden diese Hecken heute ein wesentliches Element der Landschaftsgliederung am Kalkberg von Weißenborn.

Eine Aufschlüsselung der heutigen Hauptnutzungstypen stellt sich folgendermaßen dar:

Nutzungsart	Fläch	пе	Ante	il
Wald	10,0824 l	ha	54,48	%
Gehölz (Hecken, Baumreihen)	2,1505 h	ha	11,62	%
Grünland	5,0934 h	ha	27,52	%
Garten	0,1442 l	ha	0,78	%
Steinbruch (einschließlich Schutthalden)	0,5167 h	ha	2,79	%
Sonstiges (Wege, Versorgungseinrichtung etc.)	0,5182 l	ha	2,80	%
Gesamt	18,5054 h	ha	100,00	%

2.2 Aussagen der FFH-Gebietsmeldung und Bedeutung des Untersuchungsgebietes

Das Untersuchungsgebiet wurde unter der Gebietsnummer 5122-302 und dem Namen "Kalkberg bei Weißenborn" mit einer Flächengröße von 19 ha gemeldet (RP Kassel 2004).

2007

Die Schutzwürdigkeit wird wie folgt begründet:

"Südexponierter Kalkhang mit Wacholder und Orchideen. Trespen-Schwingel-Kalktrockenrasen mit Orchideen"

An **Gefährdungen** werden genannt:

"Verbuschung, Abbau, Freizeitnutzung".

Entwicklungsziele sind

"Erhaltung und Förderung der Trockenrasenbiotope."

Biotische Ausstattung:

• Lebensraumtypen nach den Anhängen der FFH-Richtlinie:

Code FFH	Lebensraum	Fläche in ha	Fläche in %
6210	Naturnahe Kalk-Trockenrasen und deren Verbuschungsstadien (Festuco-Brometalia) (* besondere Bestände mit bemerkenswerten Orchideen)	2,5	13,2

Arten nach Anhang I und II der Vogelschutzrichtlinie:

entfällt

Arten nach Anhang II der FFH-Richtlinie:

entfällt

Arten nach Anhang IV und V der FFH-Richtlinie:

entfällt

Das geplante FFH-Gebiet umfasst das mit Verordnung vom 24. Oktober 1985 ausgewiesene Naturschutzgebiet (NSG) "Kalkberg bei Weißenborn" vollständig.

3 FFH-Lebensraumtypen (LRT)

3.1 6212 Submediterraner Halbtrockenrasen (Mesobromion)

3.1.1 Vegetation

Im gesamten Untersuchungsgebiet finden sich auf flachgründigen Böden Halbtrockenrasen, die sich nahezu ausnahmslos dem LRT 6212 (Submediterraner Halbtrockenrasen [Mesobromion]) zuordnen lassen.

Alle Flächen zeigen aufgrund der extremen standörtlichen Bedingungen solcher Kalkmagerrasen annähernd die gleiche Artengrundausstattung. Hochstet vertreten sind die Verbandskennarten *Ranunculus bulbosus* (Knolliger Hahnenfuß) und *Medicago lupulina* (Hopfenklee), sowie die Ordnungs- bzw. Klassenkennarten *Sanguisorba minor* (Kleiner Wiesenknopf), *Potentilla neumanniana* (Frühlings-Fingerkraut), *Carex caryophyllea* (Frühlings-Segge), *Centaurea scabiosa* (Skabiosen-Flockenblume) und *Pimpinella saxifraga* (Kleine Bibernelle). Durch die ehemals erfolgte Beweidung fehlt keinem Bestand des *Gentiano-Koelerietum* (Enzian-Schillergrasrasen, vergl. Tab. 2 im Anhang) die Assoziations-Kennart *Cirsium acaule* (Stengellose Kratzdistel). Nur noch selten vertreten sind hingegen ebenfalls vom Weidevieh verschmähte Arten wie der Kriechende Hauhechel (*Ononis repens*) oder die Enzianart *Gentianella ciliata* (Gefranster Enzian).

Die Bestände des Enzian-Schillergrasrasens und damit des LRT 6212 weisen auch einige Orchideenarten auf – wenn auch selten und nirgendwo in großen Individuenzahlen. Ausschließlich in dem im Nordwesten des Gebietes befindlichen Kalkmagerrasen wachsen die bezeichnenden Orchideenarten *Ophrys insectifera* (Fliegen-Ragwurz) und *Gymnadenia conopsea* (Mücken-Handwurz), während *Epipactis atrorubens* (Rotbraune Stendelwurz) und *Listera ovata* (Großes Zweiblatt) entweder nur randlich im Übergang zu lichten Gehölzbeständen oder außerhalb des Lebensraumtyps zu finden waren. Die in der Literatur angegeben seltenen und gefährdeten Arten *Botrychium lunaria* (Echte Mondraute) und *Ophrys apifera* (Bienen-Ragwurz) kommen im Gebiet nicht vor, schon der Pflegeplan (HOFFMANN 1987) nennt ausschließlich Wuchsorte außerhalb des Schutzgebietes.

Aufgrund der fehlenden Pflege der Flächen mittels Schafbeweidung sind die Bestände des LRT 6212 mit Saumarten der *Trifolio Geranietea* durchsetzt, wie Rauhaariges Veilchen (*Viola hirta*) oder *Agrimonia eupatoria* (Gew. Odermennig). Weitaus gravierender für den Erhaltungszustand ist jedoch das auf allen Flächen festzustellende Gehölzaufkommen, an dem vor allem *Crataegus monogyna* (Eingriffliger Weißdorn), *Prunus spinosa* (Schlehe), *Rosa canina* (Hunds-Rose) und *Cornus sanguinea* (Roter Hartriegel) beteiligt sind. Selbst *Symphoricarpos albus* (Schneebeere) dringt stellenweise massiv in die Bestände ein, vor allem unter dem lichten Kiefernschirm am Südrand des Gebietes.

Wie aus der nachfolgenden Tabelle deutlich hervorgeht, sind die Bestände des LRT 6212 trotz der isolierten Lage des Kalkbergs inmitten der Buntsandstein-Umgebung Wuchsort für eine beachtliche Zahl an seltenen und gefährdeten Pflanzenarten, was ihre große naturschutfachliche Bedeutung in ei ndrucksvoller Weise unterstreicht. Einschränkend ist jedoch anzumerken, dass etliche Arten ziemlich selten anzutreffen sind, beispielsweise das ansonsten in hessischen Kalkmagerrasen hochstete Pyramiden-Schillergras (Koeleria pyramidata). Weiterhin fehlt eine Reihe von charakteristischen Kalkmagerrasenarten (möglicherweise aufgrund der isolierten Lage der betreffenden Flächen); genannt seien Echter Wundklee (Anthyllis vulneraria), Hügel-Meier (Asperula cynanchica), Silberdistel (Carlina acaulis), Karthäuser-Nelke (Dianthus carthusianorum), Gew. Sonnenröschen (Helianthemum nummularium), Hufeisenklee (Hippocrepis comosa), Schopfige Kreuzblume (Polygala comosa), Wiesen-Salbei (Salvia pratensis), Tauben-Skabiose (Scabiosa columbaria) oder Aufrechter Ziest (Stachys recta).

Übersicht zum Lebensraumtyp 6212

FFH-LRT 6212 Submed	literrane Halbtrockenrasen							
Biotoptyp	06.520 Magerrasen basenreich	06.520 Magerrasen basenreicher Standorte						
Pflanzengesellschaft	Gentiano-Koelerietum pyramida (Enzian-Schillergrasrasen)	tae						
Kennzeichnende Arten	Verbandskennarten / -differenzialarten							
	Carlina vulgaris	Golddistel						
	Cirsium acaule	Stengellose Kratzdistel						
	Gentianella ciliata	Gefranster Enzian						
	Medicago lupulina (DV)	Hopfenklee						
	Onobrychis viciifolia	Futter-Esparsette						
	Ononis repens	Kriechender Hauhechel						
	Ophrys insectifera	Fliegen-Ragwurz						
	Primula veris (DV)	Arznei-Schlüsselblume						
	Ranunculus bulbosus Knollen-Hahnenfuß							
	Ordnungs- / Klassenkennarten							
	Brachypodium pinnatum	Fieder-Zwenke						
	Bromus erectus	Aufrechte Trespe						
	Carex caryophyllea	Frühlings-Segge						
	Centaurea scabiosa	Skabiosen-Flockenblume						
	Euphorbia cyparissias	Zypressen-Wolfsmilch						
	Festuca guestphalica	Harter Schwingel						
	Galium verum	Echtes Labkraut						
	Helictotrichon pratense	Wiesen-Hafer						
	Homalothecium lutescens	Laubmoos						
	Koeleria pyramidata	Pyramiden-Schillergras						
	Pimpinella saxifraga	Kleine Bibernelle						
	Potentilla neumanniana	Frühlings-Fingerkraut						
	Sanguisorba minor	Kleiner Wiesenknopf						
	Thuidium abietinum	Laubmoos						
Bezeichnende Begleiter	Gefäßpflanzen							
	Agrimonia eupatoria	Gew. Odermennig						

FFH-LRT 6212 Submediterrane Halbtrockenrasen							
		<u> </u>			Briza media	Gew. Zittergras	
					Carex flacca	Blau-Segge	
					Hieracium pilosella	Kleines Habichtskraut	
					Leontodon hispidus	Rauher Löwenzahn	
					Leucanthemum ircutianum	Wießen-Margarite	
					Linum catharticum	Purgier-Lein	
					Lotus corniculatus	Gew. Hornklee	
					Plantago lanceolata	Spitz-Wegerich	
					Plantago media	Mittlerer Wegerich	
					Thymus pulegioides	Feld-Thymian	
					Viola hirta	Rauhaariges Veilchen	
Beze	eichne	nde	Begleit	er	Kryptogamen	rtaariaarigee vellerieri	
					Hypnum cupressif. lacunosum	Laubmoos	
					Rhytidiadelphus triquetrus	Laubmoos	
					Scleropodium purum	Laubmoos	
Bem	erken	swer	te Arte	n			
RL	RL	RL			Gefäßpflanzen		
NO	HE	D	SchG	Anh.			
V	V				Briza media	Gew. Zittergras	
V	V				Carlina vulgaris	Gew. Golddistel	
V	V				Cirsium acaule	Stengellose Kratzdistel	
V	V				Galium pumilum	Niedriges Labkraut	
V	3	3	§		Gentianella ciliata	Gefranster Enzian	
	V		§		Gymnadenia conopsea	Mücken-Händelwurz	
V	V				Helictotrichon pratense	Wiesen-Hafer	
V	٧				Juniperus communis	Gew. Wacholder	
V	V				Linum catharticum	Purgier-Lein	
3	3				Melampyrum arvense	Acker-Wachtelweizen	
V	٧				Ononis repens	Kriechende Hauhechel	
	3	3	§		Ophrys insectifera	Fliegen-Ragwurz	
V	V		§		Orchis mascula	Stattliches Knabenkraut	
V	V				Polygala vulgaris	Gewöhnliche Kreuzblume	
V	V				Primula veris veris	Arznei-Schlüsselblume	
					Kryptogamen		
-	3	3			Cladonia furcata subrangiformis	Strauchflechte	
-	3				Cladonia pyxidata pocillum	Strauchflechte	
-	•	3			Cladonia rangiformis	Strauchflechte	
_	-	V		•	Ctenidium molluscum	Laubmoos	
-	-	V			Homalothecium lutescens	Laubmoos	
_	-	V			Thuidium abietinum	Laubmoos	
_	-	V		•	Rhytidiadelphus triquetrus	Laubmoos	
-	-	V			Tortella inclinata	Laubmoos	
_	_	V			Tortella tortuosa	Laubmoos	

3.1.2 Fauna (Leit-, Ziel, Problemarten)

Ergänzend zur Vegetation der Kalkmagerrasen wurde die Fauna der **Heuschrecken** erfasst, um die Wertigkeit dieser Teilflächen besser einschätzen zu können. Insgesamt wurden im Jahre 2007 zwei faunistische Begehungen (20. Juni und 4. August) durchgeführt. Die Heuschrecken wurden entlang mehrerer Transekte erhoben und teils in situ, teils akustisch und teils nach

dem Keschern determiniert. Zufällig auf den Untersuchungsflächen beobachtete **Schmetterlinge** wurden ebenfalls notiert.

Wertsteigernde Heuschrecken und Schmetterlinge

Taxon	Code	Name	RL H	RL D	Populati- onsgröße	Status/ Grund	Jahr
ORT	METRBICO	Metrioptera bicolor	3	-	r	g	2007
LEP	POLYBELL	Polyommatus bellargus	1	3	r	g	2007
LEP	ZYGACARN	Zygaena carniolica	3	3	r	g	2007
LEP	THYRJACO	Thyria jacobaeae	3	٧	r	g	2007

Taxon: MAM - Säugetiere, AVE - Vögel, REP - Reptilien, AMP - Amphibien, PIS -

Fische, COL - Käfer, LEP - Schmetterlinge, ORT - Geradflügler, PFLA -

2007

Pflanzen

Populationsgröße: c - häufig, groß; r - selten, mittel bis klein; v - sehr selten, Einzelindividuen; p -

vorhanden;

Status: a - nur adulte Stadien, b - Wochenstuben/Übersommerung (Fledermäuse), e -

gelegentlich einwandernd, unbeständig, g - Nahrungsgast, n - Brutnachweis, j - nur juvenile Stadien, m - wandernde/rastende Tiere, r - resident, t - Totfund, s - Spuren, Fährten, sonstige indirekte Nachweise, u - unbekannt, w - Überwinte-

rungsgast

Grund: e - Endemit, g - gefährdet, i - Indikatorart, k - internationale Konvention, I - le-

bensraumtypische Art, n - aggressive Neophyten, o - sonstige Gründe, s - sel-

ten, t - gebiets- oder naturraumspezifische Art, z - Zielart

Auf den faunistisch untersuchten Teilflächen des FFH-Gebietes wurde bei den Heuschrecken und Grillen zwar ein Gesamtartenspektrum von 10 Arten gefunden, aber als wertsteigernde Art kann nur die in Hessen gefährdete *Metrioptera bicolor* (Zweifarbige Beißschrecke) angesehen werden. Die thermophile Laubheuschrecken-Art ist ein typischer Bewohner von Trockenwiesen. Man findet sie sowohl auf lückigen Grasflächen mit sandigem als auch auf Kalkmagerrasen mit flachgründigem Untergrund (DETZEL 1998). In Süddeutschland ist sie noch weit verbreitet. In neuerer Zeit wurde sie jedoch nur noch bis zum Moseltal und Vogelsberg gefunden, obwohl sie früher auch im südlichen Schleswig-Holstein vorkam (BELLMANN 1993). Die Ursachen des Rückgangs sind einmal bedingt durch Lebensraumzerstörung (intensive Landwirtschaft) und zum anderen durch frühere kühl-feuchte Großklimalagen, die sich derzeit offenbar wieder umkehren. Andere Faktoren sind Verbrachung und Verbuschung von Trockenwiesen durch Nutzungsaufgabe.

Die Schmetterlinge wurden zwar nicht systematisch untersucht, dennoch wurden LRT-wertsteigernde Arten festgestellt. Der in Hessen vom Aussterben bedrohte *Polyommatus bellargus* (Himmelblauer Bläuling) wurde am 4. August im Gebiet in wenigen Exemplaren beobachtet. Er besiedelt als thermophile Falterart bevorzugt Saumgesellschaften und Magerrasen (Brometalia, Festucetalia) und als Raupenfraßpflanze dient nach WEIDEMANN (1986) allein *Hippocrepis comosa*. (*Hippocrepis comosa* kommt zumindest im Gebiet jedoch nicht vor.)

Zygaena carniolica (Esparsetten-Widderchen) ist nach EBERT (1994a) eine xerothermophile Widderchen-Art, die als bevorzugte Lebensräume mäßig bis nicht beweidete Halbtrockenrasen, Wacholderheiden, warme Kalkmagerrasen, sonnnenexponierte Böschungen und Dämme und ähnliche Standorte nutzt. Als Nahrungspflanze der Raupe kennt man *Lotus corniculatus* und *Onobrychis viciifolia*.

2007

Viele Raupen von *Thyria jacobeae* (Blut-Bär, auch Jakobskraut-Bär), einem Nachtfalter aus der Familie der Arctiidae (Bären), wurden am 20. Juni an *Senecio erucifolius*, der bevorzugten Raupenfraßpflanze, gefunden (dies bezieht sich vermutlich auch auf die vielfach damit verwechselte Art *Senecio jacobaea*). *Thyria jacobeae* kann durchaus als wertsteigernd für den LRT betrachtet werden, auch wenn sie nicht allein auf Kalkmagerrasen-Standorte beschränkt ist (EBERT 1994b). Die Art ist in Hessen gefährdet, da vielerorts die Mahd auch von ihren Lebensräumen (Dämme, Böschungen) intensiviert wurde und Magerwiesen durch starke Düngung verschwunden sind.

Sonstige bemerkenswerte Heuschrecken und Schmetterlinge

Taxon	Code	Name	RL H	RL D	Populati- onsgröße	Sta tus/ Grund	Jahr
ORT	STENLINE	Stenobothrus lineatus	V	-	r	g	2007
LEP	ARGYPAPH	Argynnis paphia	٧	-	r	g	2007
LEP	ZYGAFILI	Zygaena filipendula	>	ı	r	g	2007

Taxon: MAM - Säugetiere, AVE - Vögel, REP - Reptilien, AMP - Amphibien, PIS - Fi-

sche, COL - Käfer, LEP - Schmetterlinge, ORT - Geradflügler, PFLA - Pflanzen

Populationsgröße: c - häufig, groß; r - selten, mittel bis klein; v - sehr selten, Einzelindividuen; p -

orhanden;

Status: a - nur adulte Stadien, b - Wochenstuben/Übersommerung (Fledermäuse), e -

gelegentlich einwandernd, unbeständig, g - Nahrungsgast, n - Brutnachweis, j - nur juvenile Stadien, m - wandernde/rastende Tiere, r - resident, t - Totfund, s - Spuren, Fährten, sonstige indirekte Nachweise, u - unbekannt, w - Überwinte-

rungsgast

Grund: e - Endemit, g - gefährdet, i - Indikatorart, k - internationale Konvention, I - Ie-

bensraumtypische Art, n - aggressive Neophyten, o - sonstige Gründe, s - sel-

ten, t - gebiets- oder naturraumspezifische Art, z - Zielart

Eine weitere Indikatorart der Kalkmagerrasen-Areale im Gebiet war **Stenobothrus lineatus** (Heide-Grashüpfer), der jedoch nur auf der Vorwarnliste in Hessen steht und somit nicht als wertsteigernde Art für den LRT zählt. Der Heide-Grashüpfer wurde an drei besonnten, trockeneren Stellen im Gebiet gefunden. Er ist eine Trockenheit liebende Art, die nach Detzel (1998) bevorzugt Trockenrasen, Halbtrockenrasen, Ginsterheiden, Wacholderheiden und kurzrasige Waldränder besiedelt. Auch Bellmann (1993) beschreibt sie als dominierende Art von Heidegebieten, Trockenrasen, Wegrändern und Ödland, seltener auf feuchten Wiesen. Die Tiere weisen zwar eine gewisse Thermophilie auf, aber da sie auch in höheren Lagen vorkommen, haben sie sicherlich eine gewisse Kältetoleranz.

Argynnis paphia (Kaisermantel) wurde ebenfalls mit 3 Exemplaren am 4. August im nördlichen Gebietsteil nahe des Waldrandes auf Blüten nektarsaugend beobachtet. Als Lebensraum kommen alle Laub-, Misch- und Nadelwälder in Frage. Die typischen Flugstellen dieser paläarktisch verbreiteten, univoltinen Waldart sind sonnige, etwas luftfeuchte Waldränder und wege, Waldlichtungen, Kahlschläge und Schneisen mit reichlichem Bestand an Nektarpflanzen wie Cirsium, Eupatorium cannabinum, Sambucus ebulus und Umbelliferen. Tilia-Arten gehören ebenfalls mit zu den wichtigsten Nektarquellen (EBERT & RENNWALD 1991). Zur Eiablage ist ein spezielles Mosaik an Requisiten erforderlich. Die Eier werden nicht an die Raupenfutterpflanzen (Veilchen-Arten), sondern einzeln hinter Rindenstücke von Baumstämmen in der Nachbarschaft der Veilchen-Bestände abgelegt.

Zygaena filipendulae (Gemeines Blutströpfchen) ist eine euryöke Art, die wohl das breiteste Lebensraumspektrum aller Widderchen einnimmt. Biotoppräferenzen sind bei ihr nicht erkennbar, sie besiedelt sowohl feuchte Auen, nasse Wiesen, sogar Moore und Riedflächen als auch trockene Kalkmagerrasen, fast vegetationslose Trockenhänge oder Lößböschungen und Dämme. Die Raupennahrung ist auf Leguminosen beschränkt wie bspw. *Lotus corniculatus* und *Lotus uliginosus*. Die Nahrung des Falters ist entsprechend des großen Habitatspektrums ebenfalls vielseitig, bisher sind für unsere Breiten fast 50 verschiedene Nahrungsblüten bekannt (EBERT 1994a).

3.1.3 Habitatstrukturen (inkl. abiotische Parameter)

LRT 6212

Code Bezeichnung ABS Großes Angebot an Blüten und Samen AFR Flechtenreichtum AKM Kleinräumiges Mosaik ALÜ Lückiger Bestand AMB Mehrschichtiger Bestandsaufbau AMS Moosreichtum GOB Offenböden **HEG** Einzelgehölze / Baumgruppe

Fauna: Hinsichtlich der Ergebnisse zur untersuchten Fauna sind die derzeitigen Habitatstrukturen für eine Besiedlung eines größeren Artenspektrums mit wertsteigernden Arten weniger geeignet. Der Grund ist, dass das Futterpflanzenangebot der LRT-Flächen relativ eingeschränkt ist. Für eine Besiedlung weiterer wärmeliebender Arten ist ein erweitertes Futterpflanzenangebot jedoch ein wesentlicher Faktor.

3.1.4 Nutzung und Bewirtschaftung

Code	Bezeichnung	Fläche
GB	Grünlandbrache	0,3189 ha
GE	Einschürige Wiese	0,0458 ha
NK	Keine Nutzung	0,0685 ha

Die in obiger Tabelle angeführten Nutzungsarten und Flächengrößen geben einzig den während der kurzen Erhebungsphase im Frühjahr/Sommer 2007 erkennbaren Nutzungszustand wieder.

3.1.5 Beeinträchtigungen und Störungen

Code	Bezeichnung	Lage
202	Nutzungsaufgabe	i
370	Pflegerückstand	i
400	Verbrachung	i
403	Vergrasung	i
410	Verbuschung	i / a

Die festgestellten Beeinträchtigungen spielen eine erhebliche Rolle, da sie zumeist auf ganzer Fläche angetroffen werden. Damit muss der Pflegezustand, wie er sich im Jahre 2007 darstellte, als derzeit keineswegs ausreichend bezeichnet werden; dieser kann für den Erhalt des LRT 6212 wesentlich günstiger gestaltet werden (siehe Kap. 8.1).

3.1.6 Bewertung des Erhaltungszustandes der LRT ⁵

Code	Bezeichnung	Wertstufe	Fläche (ha)	Prozent
6212	Submediterrane Halbtrockenrasen (Mesobromion)	В	0,2373	1,28 %
6212	Submediterrane Halbtrockenrasen (Mesobromion)	С	0,1959	1,06 %
	Gesamt		0,4331	2,34 %

Die kartierten Bestände des LRT 6212 besitzen in den meisten Fällen zumindest einen gute (Wertstufe "B"), teilweise aber auch nur eine mittlere Artenausstattung auf (Wertstufe "C"). Die Habitatausstattung ist überwiegend gut (Wertstufe "B"). Auf dem größten Teil der Fläche sind mehr oder minder umfangreiche Beeinträchtigungen festzustellen (Wertstufe "C"). Lediglich im

siehe auch die Bewertungsbögen im Anhang

Falle der beiden nördlichsten, genutzten Vorkommen gibt es geringe oder keine Beeinträchtigungen.

2007

In der Summe ergibt sich damit für knapp 58 % der LRT-Flächen die Wertstufe "B" und somit ein "guter Erhaltungszustand", für die übrigen Bestände ergibt sich lediglich Wertstufe "C" und damit ein "mittlerer bis schlechter Erhaltungszustand".

3.1.7 Schwellenwerte

Lebensraumtypen

LRT	Wertstufen	Gesamtfläche	(unterer) Schwellenwert
6212	B + C	0,4331 ha	0,4000 ha
6212	В	0,2373 ha	0,2135 ha

Der nicht zu unterschreitende Schwellenwert orientiert sich an RÜCKRIEM & ROSCHER (1999), nach denen die vorhandene Flächengröße um nicht mehr als 10% unterschritten werden darf, ohne dass es zu einer Verschlechterung kommt.

3.2 6510 Magere Flachland-Mähwiesen (Alopecurus pratensis, Sanguisorba officinalis)

3.2.1 Vegetation

Artenreiche Frischwiesen auf mäßig nährstoffarmen Böden nehmen nahezu alle genutzten Teile des Gebietes ein. Zum LRT 6510 lassen sich per Definition jedoch lediglich solche Bestände stellen, die darüber hinaus vom Typ der Glatthaferwiese (*Arrhenatheretum elatioris*) sind und gemäht oder zumindest als Mähweide genutzt werden. Hierdurch wird derzeit nur der Bereich südwestlich des Querweges als Vorkommen des LRT 6510 ausgeschlossen, da jener Bereich ausschließlich von Schafen beweidet wird.

Charakteristische Arten der Glatthaferwiesen (*Arrhenatheretum elatioris*) sind neben der namengebenden Art *Arrhenatherum elatius* (Glatthafer) noch *Crepis biennis* (Wiesen-Pippau) und *Galium album* (Wiesen-Labkraut). Da es sich durchweg um Vorkommen auf kalkreichen Böden handelt, sind in den Beständen in großer Zahl Arten der Halbtrockenrasen und wärmeliebenden Säume zu finden, insbesondere *Ranunculus bulbosus* (Knolliger Hahnenfuß), *Sanguisorba minor* (*Kleiner Wiesenknopf*), *Pimpinella saxifraga* (Kleine Bibernelle), *Plantago media* (Mittlerer Wegerich), *Medicago lupulina* (Hopfenklee) oder auch *Onobrychis viciifolia* (Futter-Esparsette). Zusammen mit den

ebenfalls zahlreich vertretenen Kennarten der Ordnung *Arrhenatheretalia* sorgen jene Arten für einen krautreichen und zumeist auch blumenbunten Aspekt der Bestände (siehe auch Fototeil).

Übersicht zum Lebensraumtypen 6510

		pecurus pratensis, Sangui-
sorba o	fficinalis)	
Biotoptyp	06.110 Grünland frischer Sta	ndorte, extensiv genutzt
Pflanzengesellschaft	Arrhenatheretum elatioris	Glatthaferwiese
Kennzeichnende Arten	Assoziations- / Verbandske	•
	Arrhenatherum elatius	Glatthafer
	Crepis biennis	Wiesen-Pippau
	Galium album	Weißes Labkraut
	Pimpinella major	Große Bibernelle
	Ordnungskennarten (Arrhe	
	Achillea millefolium	Gew. Wiesen-Schafgarbe
	Alchemilla monticola	Bergwiesen-Frauenmantel
	Bellis perennis	Gänseblümchen
	Helictotrichon pubescens	Flaum-Hafer
	Knautia arvensis	Wiesen-Knautie
	Leucanthemum ircutianum	Wiesen-Margarite
	Leontodon autumnalis	Herbst-Löwenzahn
	Leontodon hispidus	Rauher Löwenzahn
	Lotus corniculatus	Gew. Hornklee
	Phleum pratense	Wiesen-Lieschgras
	Tragopogon pratensis	Wiesen-Bocksbart
	Trifolium dubium	Faden-Klee
	Trifolium repens	Weiß-Klee
	Trisetum flavescens	Goldhafer
	Klassenkennarten (Molinio	-Arrhenatheretea)
	Alopecurus pratensis	Wiesen-Fuchsschwanz
	Centaurea jacea	Wiesen-Flockenblume
	Cerastium holosteoides	Gemeines Hornkraut
	Festuca pratensis	Wiesen-Schwingel
	Festuca rubra	Rot-Schwingel
	Holcus lanatus	Wolliges Honiggras
	Lathyrus pratensis	Wiesen-Platterbse
	Plantago lanceolata	Spitz-Wegerich
	Poa pratensis	Wiesen-Rispengras
	Ranunculus acris	Scharfer Hahnenfuß
	Rhinanthus minor	Kleiner Klappertopf
	Rumex acetosa	Wiesen-Sauerampfer
	Taraxacum sectio Ruderalia	Wiesen-Löwenzahn
	Trifolium pratense	Rot-Klee
	Vicia cracca	Vogel-Wicke
	Moose	10901111010
	Brachythecium rutabulum	Laubmoos
	Rhytidiadelphus squarrosus	Laubmoos
Bezeichnende Begleiter	Gefäßpflanzen (v.a. Arten de	

FFH-LRT 6510 Magere Flac sorba officir		•	opecurus pratensis, Sangui-			
Agrimonia eupatoria Gew. Odermennig		Gew. Odermennig				
					Briza media	Gew. Zittergras
					Bromus erectus	Aufrechte Trespe
					Carex flacca	Blau-Segge
					Centaurea scabiosa	Skabiosen-Flockenblume
					Cirsium acaule	Stengellose Kratzdistel
					Gentianella ciliata	Gefranster Enzian
					Koeleria pyramidata	Pyramiden-Schillergras
					Linum catharticum	Purgier-Lein
					Medicago lupulina	Hopfenklee
					Onobrychis viciifolia	Futter-Esparsette
					Pimpinella saxifraga	Kleine Bibernelle
					Plantago media	Mittlerer Wegerich
					Potentilla neumanniana	Frühlings-Fingerkraut
					Primula veris	Arznei-Schlüsselblume
					Ranunculus bulbosus	Knolliger Hahnenfuß
					Sanguisorba minor	Kleiner Wiesenknopf
					Thymus pulegioides	Feld-Thymian
					Viola hirta	Rauhaariges Veilchen
Bez	eichr	nende	e Begle	iter	Moose	
					Homalothecium lutescens	Laubmoos
			erte Art			
RL	RL	RL	FFH-	BArt-	Gefäßpflanzen	
NO	HE		Anh.	SchV	Duine media	Carry 7:thararaa
V	V V	•	•	•	Briza media	Gew. Zittergras
v	v 3	3		•	Cirsium acaule Gentianella ciliata	Stengellose Kratzdistel Gefranster Enzian
v	٥ ٧		§	•	Linum catharticum	Purgier-Lein
3	3	•	•	•		Acker-Wachtelweizen
V	о V	•	•	•	Melampyrum arvense Polygala vulgaris	Gewöhnliche Kreuzblume
v	V	•	•	•	Primula veris veris	Arznei-Schlüsselblume
RL	V RL	RL	FFH-	BArt-	Kryptogamen	ALLIGITOCHIUSSCIDIUHIC
NO	HE	D	Anh.	SchV	Taypiogamen	
_	_	V			Homalothecium lutescens	Laubmoos
_	-	V			Thuidium philibertii	Laubmoos
-	_	V			Rhytidiadelphus triquetrus	Laubmoos

3.2.2 Fauna

entfällt

3.2.3 Habitatstrukturen (inkl. abiotische Parameter)

Code	Bezeichnung
ABS	Großes Angebot an Blüten und Samen
AKR	Krautreicher Bestand
ALÜ	Lückiger Bestand
AMB	Mehrschichtiger Bestandsaufbau
AUR	Untergrasreicher Bestand

3.2.4 Nutzung und Bewirtschaftung

Code	e Bezeichnung	Fläche
GE	Einschürige Wiese	1,4835 ha
GM	Mahd	0,0010 ha

Die in obiger Tabelle angeführten Nutzungsarten und Flächengrößen geben einzig den während der kurzen Erhebungsphase im Frühjahr/Sommer 2007 erkennbaren Nutzungszustand wieder.

3.2.5 Beeinträchtigungen und Störungen

Es konnten keinerlei Beeinträchtigungen festgestellt werden.

3.2.6 Bewertung des Erhaltungszustandes der LRT ⁶

Code	Bezeichnung	Wertstufe	Fläche (ha)	Prozent
6510	Magere Flachland-Mähwiesen (Alopecurus pratensis, Sanguisorba officinalis)	Α	0,0328	0,18 %
6510	Magere Flachland-Mähwiesen (Alopecurus pratensis, Sanguisorba officinalis)	В	1,4517	7,84 %
	Gesamt		1,4845	8,02 %

Die kartierten Bestände des LRT 6510 weisen in fast 98 % der Bestände eine gute Artenausstattung (Wertstufe "B") auf, auf 2 % kann sogar eine hervorragende Artenausstattung (Wertstufe "A") attestiert werden. Die Habitatausstattung ist in allen Fällen gut (Wertstufe "B") und auf allen Flächen sind keine Beeinträchtigungen festzustellen (Wertstufe "A").

In der Summe ergibt sich damit (in gleichen Flächenanteilen) auf kleiner Fläche die Wertstufe "A" und somit ein "hervorragender Erhaltungszustand", für alle übrigen Bestände ergibt sich Wertstufe "B" und damit ein "guter Erhaltungszustand".

3.2.7 Schwellenwerte

Lebensraumtypen

LRT	Wertstufen	Gesamtfläche	(unterer) Schwellenwert
6510	A + B	1,4845 ha	1,3360 ha
6510	Α	0,0328 ha	0,0295 ha

⁶ siehe auch die Bewertungsbögen im Anhang

Zwar geben RÜCKRIEM & ROSCHER (1999) für den LRT 6510 keinen Schwellenwert an, der nicht unterschritten werden darf, ohne dass es zu einer Verschlechterung kommt, doch wird entsprechend den Halbtrockenrasen eine 10%-Schwelle angenommen.

2007

3.3 *8160 Kalkhaltige Schutthalden der collinen bis montanen Stufe Mitteleuropas

3.3.1 Vegetation

Entlang der Abbaukante im Südwesten des Gebietes finden sich artenarme Bestände der Gesellschaft des Schmalblättrigen Hohlzahns (*Galeopsietum angustifoliae*). Die Wuchsorte sind überwiegend extrem steil (natürlicherweise sich einstellender Neigungswinkel einer Halde), skelettreich und nur mit geringem Feinerdeanteil (siehe auch Fototeil). Infolge der Instabilität des Standortes vermögen hier nur wenige Pflanzenarten zu wachsen und die Bestände sind sehr lückig.

Übersicht zum Lebensraumtyp *8160

FFH-LRT *8160 Kalkhalti	160 Kalkhaltige Schutthalden in Mitteleuropa	
Biotoptyp	10.200 Block- und Schutthalden	
Pflanzengesellschaft	Galeopsietum angustifoliae (Gesellschaft des Schmalblättrigen Hohlzahns)	
Kennzeichnende Arten	Verbandskennart	
	Galeopsis angustifolia	Schmalblättriger Hohlzahn
	Ordnungs- / Klassenkennart	
	Chaenorhinum minus	Kleines Leimkraut
Bezeichnende Begleiter	Gefäßpflanzen	
	Convolvulus arvensis	Acker-Zaunwinde
	Echium vulgare	Natternkopf
	Hieracium pilosella	Kleines Habichtskraut
	Leucanthemum vulgare agg.	Gew. Margarite

3.3.2 Fauna

entfällt

3.3.3 Habitatstrukturen (inkl. abiotische Parameter)

LRT *8160

Code	Bezeichnung
ALÜ	Lückiger Bestand
GFA	Anstehender Fels
GFB	Felsbänke
GFW	Felswand
GOB	Offenböden
GST	Steine / Scherben
GSU	Gesteinsschutt

3.3.4 Nutzung und Bewirtschaftung

Code	Bezeichnung	Fläche
NK	Keine Nutzung	0,0150 ha

Nach dem Geländeeindruck während der Begehungen im Frühjahr/Sommer 2007 findet im eigentlichen Steinbruch keinerlei Nutzung mehr statt (lediglich dessen südöstlicher Rand dient als Lagerfläche).

3.3.5 Beeinträchtigungen und Störungen

Es konnten keinerlei Beeinträchtigungen festgestellt werden.

3.3.6 Bewertung des Erhaltungszustandes der LRT ⁷

Code	Bezeichnung	Wertstufe	Fläche (ha)	Prozent
*8160	Kalkhaltige Schutthalden der collinen bis montanen Stufe Mitteleuropas	В	0,0150	0,08 %

Der einzige Bestand des LRT *8160 weist eine gute floristische Ausstattung auf (Wertstufe "B"), besitzt darüberhinaus eine gute Habitatausstattung (Wertstufe "B") und zeigt keine Beeinträchtigungen (Wertstufe "A").

In der Summe ergibt sich damit die Wertstufe "B" und ein "guter Erhaltungszustand".

siehe auch die Bewertungsbögen im Anhang

3.3.7 Schwellenwerte

Lebensraumtypen

LRT	Wertstufen	Gesamtfläche	(unterer) Schwellenwert
*8160	В	0,0150 ha	0,0150 ha

RÜCKRIEM & ROSCHER (1999) geben für den LRT *8160 keinen Schwellenwert an, der nicht unterschritten werden darf, ohne dass es zu einer Verschlechterung kommt. Wegen der Kleinheit des Vorkommens des prioritären Lebensraumtyps wird jede Verringerung der Fläche als Verschlechterung angesehen.

3.4 9130 Waldmeister-Buchenwald (Asperulo-Fagetum)

Die Bearbeitung des LRT 9130 erfolgte durch Hessen-Forst FIV Gießen, wobei nach einem festgelegten Schema per EDV die Zuordnung zum Lebensraumtyp und zur Wertstufe getroffen wurde; außer der Abgrenzung und Bewertung des LRT wurden keine weiteren Daten zur Verfügung gestellt.

Aufgrund des Auftrages, die von Hessen-Forst FIV gelieferten Daten unverändert zu übernehmen (vgl. Protokoll vom 11.08.2004), wurde der durch Hessen-Forst FIV Gießen ausgeschiedene Bestand in Karte 1 dargestellt. Eine Anpassung erfolgte dort, wo Orchideenbuchenwald (siehe Kap. 3.5) beziehungsweise andere LRT aus der von Hessen-Forst FIV als Wald-LRT angesprochenen Fläche ausgegrenzt wurden.

3.4.1 Vegetation

entfällt

3.4.2 Fauna

entfällt

3.4.3 Habitatstrukturen (inkl. abiotische Parameter)

entfällt

3.4.4 Nutzung und Bewirtschaftung

LRT 9130

Code	Bezeichnung	Fläche
FH	Hochwald	3,3916 ha
FK	Keine forstliche Nutzung	0,0047 ha
NK	Keine Nutzuna	0.2851 ha

3.4.5 Beeinträchtigungen und Störungen

entfällt

3.4.6 Bewertung des Erhaltungszustandes der LRT

Code	Bezeichnung	Wertstufe	Fläche (ha)	Prozent
9130	Waldmeister-Buchenwald (Asperulo- Fagetum	В	2,8044	15,14 %
9130	Waldmeister-Buchenwald (Asperulo- Fagetum	С	0,8792	4,75 %

Angegeben ist die Fläche aufgrund der von Hessen-Forst FIV Gießen zur Verfügung gestellten Datei ("ArcView-Shape").

3.4.7 Schwellenwerte

<u>Lebensraumtypen</u>

LRT	Wertstufen	Gesamtfläche	(unterer) Schwellenwert
9130	B + C	3,6836 ha	3,3150 ha
9130	В	2,8044 ha	2,5250 ha

Zwar geben RÜCKRIEM & ROSCHER (1999) für den LRT 9130 keinen Schwellenwert an, der nicht unterschritten werden darf, ohne dass es zu einer Verschlechterung kommt, doch wird entsprechend den Orchideen-Buchenwäldern eine 10%-Schwelle angenommen.

3.5 9150 Mitteleuropäischer Orchideen-Kalk-Buchenwald (Cephalanthero-Fagion)

Obgleich im Standarddatenbogen nicht aufgeführt, konnte im Rahmen der Grunddatenerhebung der LRT 9150 – Mitteleuropäischer Orchideen-Kalk-Buchenwald (Cephalanthero-Fagion) festgestellt und kartiert werden. Es handelt sich um ein- bis zweischichtig aufgebaute Buchenbestände. Bei einschichtigem Aufbau ist der Kronenschluss dichter und lässt nur vergleichsweise wenig Licht auf den Waldboden durch. Infolgedessen ist die Krautschicht nur sehr schütter ausgebildet; eine Strauchschicht fehlt weitgehend. Bei zweischichtigem Aufbau und lückigerem Kronenschluss zeigt sich eine etwas arten- und individuenreichere Krautschicht und es treten vermehrt charakteristische Sträucher auf, v.a. Roter Hartriegel (*Cornus sanguinea*), Eingriffliger Weißdorn (*Crataegus monogyna* agg.), Liguster (*Ligustrum vulgare*) und Kriechende Rose (*Rosa arvensis*). In der Strauch- und Krautschicht finden sich eine Reihe von bezeichnenden Kenn- und Trennarten trockener, wärmerer Standorte (vergl. die nachstehende Tabelle).

3.5.1 Vegetation

FFH-LRT 9150 Mitteleuropäischer Orchideen-Kalk-Buchenwald (Cephalanthero-Fagion)				
Biotoptyp	01.130 Buchenwälder trockenwarmer Standorte			
Pflanzengesellschaft	Carici-Fagetum Orchideen-Buchenwald			
Kennzeichnende Arten	Carici-Fagetum Orchideen-Buchenwald Unterverbandskennarten (Cephalanthero-Fagenion) Cephalanthera damasonium Weißes Waldvögelein Unterverbandstrennarten (Cephalanthero-Fagenion) Carex flacca Blau-Segge Cornus sanguinea Roter Hartriegel Ligustrum vulgare Liguster Rosa arvensis Kriechende Rose Verbandskennarten(Fagion sylvaticae) Galium odoratum Waldmeister Hordelymus europaeus Waldgerste Luzula luzuloides Weiße Hainsimse Neottia nidus-avis Nestwurz Ordnungskennarten (Fagetalia) Campanula trachelium Nesselblättr. Glockenblume Carex sylvatica Wald-Segge Dryopteris filix-mas Männlicher Wurmfarn Viola reichenbachiana Wald-Veilchen Lonicera xylosteum Rote Heckenkirsche Klassenkennarten (Querco-Fagetea) Corylus avellana Hasel Crataegus macrocarpa Crataegus monogyna Eingriffliger Weißdorn Fagus sylvatica Rotbuche Acer pseudoplatanus Berg-Ahorn			
	Viburnum opulus Hedera helix Poa nemoralis	Gew. Schneeball Efeu Hain-Rispengras		
5	Quercus robur Stiel-Eiche			
Bemerkenswerte Arten RL RL RL FFH- BNat-				
SW HE D Anh. SchG				
§	Cephalanthera damasonium	Weißes Waldvögelein		
§	Neottia nidus-avis	Nestwurz		
3	Rosa arvensis	Kriechende Rose		

3.5.2 Fauna

entfällt

3.5.3 Habitatstrukturen (inkl. abiotische Parameter)

Code	Bezeichnung
GFL	Felsblöcke
GST	Steine / Scherben
HKL	Kronenschluss lückig
HSE	Einschichtiger Waldaufbau
HSZ	Zweischichtiger Waldaufbau

3.5.4 Nutzung und Bewirtschaftung

Code	Bezeichnung	Fläche
FH	Hochwald	3,3686 ha

3.5.5 Beeinträchtigungen und Störungen

Es konnten keinerlei Beeinträchtigungen festgestellt werden.

3.5.6 Bewertung des Erhaltungszustandes der LRT ⁸

Code	Bezeichnung	Wertstufe	Fläche (ha)	Prozent
9150	Mitteleuropäischer Orchideen-Kalk- Buchenwald (Cephalanthero-Fagion)	С	3,3686	18,20 %

Die kartierten Bestände des LRT 9150 besitzen nur eine mittlere floristische Ausstattung (Wertstufe "C"); aufgrund des nur mittleren Alters der Waldbestände ist auch die Habitatausstattung nur als mittel zu bezeichnen (Wertstufe "C"). Dagegen sind keine Beeinträchtigungen festzustellen (Wertstufe "A"). Damit erreichen alle Bestände in der Summe lediglich eine Bewertung mit "C" ("mittlerer bis schlechter Erhaltungszustand").

3.5.7 Schwellenwerte

Lebensraumtypen

LRT	Wertstufen	Gesamtfläche	(unterer) Schwellenwert
9150	С	3,3686 ha	3,0300 ha

Der nicht zu unterschreitende Schwellenwert orientiert sich an RÜCKRIEM & ROSCHER (1999), nach denen die vorhandene Flächengröße um nicht mehr

⁸ siehe auch die Bewertungsbögen im Anhang

als 10% unterschritten werden darf, ohne dass es zu einer Verschlechterung kommt.

2007

- 4 Arten (FFH-Richtlinie, Vogelschutz-Richtlinie)
- 4.1 FFH-Anhang II-Arten

entfällt

4.2 Arten der Vogelschutzrichtlinie

entfällt

4.3 FFH-Anhang IV-Arten

entfällt

4.4 Sonstige bemerkenswerte Arten

entfällt

5 Biotoptypen und Kontaktbiotope

5.1 Bemerkenswerte, nicht FFH-relevante Biotoptypen entfällt

5.2 Kontaktbiotope des FFH-Gebietes

Als Kontaktbiotope treten auf (siehe Karte 5):

Code	Bezeichnung	Länge (m)	Einfluss
01.110	Buchenwälder mittlerer und basenreicher Standorte	123	0
01.110	Buchenwälder mittlerer und basenreicher Standorte	329	+
01.130	Buchenwälder trockenwarmer Standorte	12	+
01.220	Sonstige Nadelwälder	4	0
01.300	Mischwälder	10	0
02.100	Gehölze trockener bis frischer Standorte	432	0
06.120	Grünland frischer Standorte, intensiv genutzt	611	0
06.300	Übrige Grünlandbestände	92	0
11.140	Intensiväcker	132	0
12.100	Nutzgarten/Bauerngarten	45	0
13.000	Friedhöfe, Parks und Sportanlagen	198	0
14.100	Siedlungsfläche	330	0
14.300	Freizeitanlagen	70	_
14.510	Straße	104	0
14.520	Befestigter Weg	16	0
14.530	Unbefestigter Weg	5	0
	Gesamt	2.513	

Als positiv konnten die im Nordwesten angrenzenden Buchenwälder gewertet werden. Als negativ wurde lediglich die Freizeitanlage im Nordosten angesehen, von der Störungen und Emissionen ausgehen können.

Alle übrigen angrenzenden Biotoptypen weisen keinen Einfluss auf.

Gesamtbewertung

6.1 Vergleich der aktuellen Ergebnisse mit den Daten der Gebietsmeldung

Vegetation

Code	Lebensraum	Fläc	he in	Rep.	re	el.C	Эr.	Erh	Ge	s.V	/ert	Quelle	Jahr
FFH		ha	%		N	L	D	Zust.	N	L	D		
6210	Naturnahe Kalk-Trockenrasen und deren	2,5	13	В	1	1	1	С	С	С	С	SDB	2004
	Verbuschungsstadien (Festuco-Brometalia) (* besondere Bestände mit bemerkenswerten Orchideen)	0,4	2,3	В	1	1	1	В	С	С	С	GDE	2007
6510	Magere Flachland-Mähwiesen (Alopecurus											SDB	2004
	pratensis, Sanguisorba officinalis)	1,5	8,0	В	1	1	1	В	В	В	В	GDE	2007
*8160	Kalkhaltige Schutthalden der collinen bis											SDB	2004
	montanen Stufe Mitteleuropas	0,02	0,08	В	1	1	1	В	В	В	В	GDE	2007
9130	Waldmeister-Buchenwald (Asperulo-											SDB	2004
	Fagetum)	3,7	19,9	В	1	1	1	В	С	С	С	GDE	2007
9150	Mitteleuropäischer Orchideen-Kalk-											SDB	2004
	Buchenwald (Cephalanthero-Fagion)	3,4	18,2	В	1	1	1	С	С	С	С	GDE	2007

Repräsentativität: A - hervorragend, B - gut, C - mittel, D - nicht signifikant

Relative Größe: N- Naturraum, L - Land, D - Deutschland

> 1 < 2 % der LRT-Fläche des Bezugsraumes 2 2-5 % der LRT-Fläche des Bezugsraumes 3 6 -15 % der LRT-Fläche des Bezugsraumes

4 16 - 50 % der LRT-Fläche des Bezugsraumes

5 > 50 % der LRT-Fläche des Bezugsraumes A - hervorragend, B - gut, C - mittel bis schlecht

Erhaltungszustand: Gesamt-Wert: N- Naturraum, L - Land, D - Deutschland

A - Wert des Gebietes für die Erhaltung des LRT: hoch B - Wert des Gebietes für die Erhaltung des LRT: mittel C - Wert des Gebietes für die Erhaltung des LRT: gering

Quelle: SDB - Standard-Datenbogen, GDE - Grunddatenerhebung

Code	Bezeichnung	Wertstufe	Fläche (ha)	Prozent
6212	Submediterrane Halbtrockenrasen (Mesobromion)	В	0,2373	2,64 %
6212	Submediterrane Halbtrockenrasen (Mesobromion)	С	0,1959	2,18 %
	Gesamt		0,4332	4,82 %

Code	Bezeichnung	Wertstufe	Fläche (ha)	Prozent
6510	Magere Flachland-Mähwiesen (Alopecurus pratensis, Sanguisorba officinalis)	Α	0,0328	0,37 %
6510	Magere Flachland-Mähwiesen (Alopecurus pratensis, Sanguisorba officinalis)	В	1,4517	16,16 %
	Gesamt		1,4845	16,53 %

Code	Bezeichnung	Wertstufe	Fläche (ha)	Prozent
*8160	Kalkhaltige Schutthalden der collinen bis mon-	В	0,0150	0,17 %
	tanen Stufe Mitteleuropas			

Code	Bezeichnung	Wertstufe	Fläche (ha)	Prozent
9130	Waldmeister-Buchenwald (Asperulo-Fagetum)	В	2,8044	31,19 %
9130	Waldmeister-Buchenwald (Asperulo-Fagetum)	С	0,8792	9,79 %
	Gesamt		3,6836	40,98 %

Code	Bezeichnung	Wertstufe	Fläche (ha)	Prozent
9150	Mitteleuropäischer Orchideen-Kalk-Buchenwald (Cephalanthero-Fagion)	С	3,3686	37,50 %

Die Übersicht zeigt, dass auf knapp 9 ha und damit immerhin gut 48,5 % des nur 18,5 ha großen FFH-Gebietes Lebensraumtypen vertreten sind, von denen 78,5 % zu den beiden Buchenwald-LRT gehören.

Die Halbtrockenrasen umfassen mit etwas über 0,4 ha nur einen Bruchteil des ursprünglich gemeldeten LRT-Fläche, dafür werden aber knapp 1,5 ha von hochwertigem Frischgrünland eingenommen, dessen Existenz bislang nicht bekannt war.

Ebenfalls nicht bekannt war das Vorkommen des LRT *8160, der zwar nur geringe Gebietsfläche einnimmt, in Anbetracht der nächsten möglichen Vorkommen dieses an Kalkgestein gebundenen LRT aber um so bedeutender ist.

Fauna

entfällt

6.2 Vorschläge zur Gebietsabgrenzung

entfällt

7 Leitbilder, Erhaltungsziele

7.1 Leitbilder

Der Kalkberg bei Weißenborn wird durch totholzreiche, naturnahe Wälder charakterisiert. Im Offenland dominieren beweidete Kalkmagerrasen, extensiv genutzte Mähwiesen und sich selbst überlassene Kalkschutthalden und Gesteinsaufschlüsse.

Fauna: Aus faunistischer Sicht ist eine extensive Mahd oder Beweidung der Flächen auf jeden Fall zur Offenhaltung beizubehalten. Hierdurch können die Tierbestände mit dem derzeitigen Artenspektrum erhalten, möglicherweise sogar vergrößert werden.

Ziel von Planungen muss es deshalb sein, diesen Kulturlandschaftscharakter zu bewahren und schutzwürdige Strukturen zu erhalten und zu entwickeln.

Prioritätenliste der zu fördernden LRT

gleichrangig: LRT 6510, 6212, *8160 || 9130, 9150

Die LRT werden als gleichrangig hinsichtlich der Priorität eingestuft, da weder im Offenland ein LRT auf Kosten des anderen gefördert werden soll, wie auch im Wald keiner der beiden LRT Vorrang vor dem anderen genießt.

7.2 Erhaltungsziele ⁹

7.2.1 Erhaltungsziele aus der NATURA-2000-Verordnung

6210 Naturnahe Kalk-Trockenrasen und deren Verbuschungsstadien (Festuco-Brometalia) (* besondere Bestände mit bemerkenswerten Orchideen)

- Erhaltung des Offenlandcharakters der Standorte
- Erhaltung einer bestandserhaltenden, die Nährstoffarmut begünstigenden Bewirtscha tung

7.2.2 Vorrangige Erhaltungsziele Stand 1. 1. 2008

6510 Magere Flachland-Mähwiesen (Alopecurus pratensis, Sanguisorba officinalis)

Die Erhaltungsziele wurden vom RP Kassel zur Verfügung gestellt und sind gemäß Werkvertrag zu übernehmen

- Erhaltung eines für den LRT günstigen Nährstoffhaushaltes
- Erhaltung einer bestandsprägenden Bewirtschaftung

8160 * Kalkhaltige Schutthalden der collinen bis montanen Stufe Mitteleuropas

- Gewährleistung der natürlichen Entwicklung und Dynamik
- Erhaltung offener, besonnter Standorte

9130 Waldmeister-Buchenwald (Asperulo-Fagetum)

 Erhaltung naturnaher und strukturreicher Bestände mit stehendem und liegendem Totholz, Höhlenbäumen und lebensraumtypischen Baumarten in ihren verschiedenen Entwicklungsstufen und Altersphasen

9150 Mitteleuropäischer Orchideen-Kalk-Buchenwald (Cephalanthero-Fagion)

 Erhaltung naturnaher und strukturreicher Bestände mit stehendem und liegendem Totholz, Höhlenbäumen und lebensraumtypischen Baumarten in verschiedenen Entwicklungsstufen und Altersphasen

8. Erhaltungspflege, Nutzung und Bewirtschaftung zur Sicherung und Entwicklung von FFH-LRT und -Arten

8.1 Nutzung und Bewirtschaftung, Vorschläge zur Erhaltungspflege

Die zur Zeit praktizierte Nutzung bzw. Pflege der Flächen im Untersuchungsgebiet ist je nach Lebensraumtyp unterschiedlich gut geeignet, zum Erhalt und der Entwicklung der Lebensraumtypen beizutragen.

Für den LRT 6510 (Frischgrünland) hat die bislang durchgeführte einmalige Mahd der Flächen keine Nachteile gebracht, vielmehr sind die Bestände durchweg in einem zumindest guten Erhaltungszustand. Aus diesem Grund können die Frischwiesenbestände auch weiterhin in der bewährten Weise genutzt werden:

Code	Art der Maßnahme
N01	Mahd

Lediglich der Mahdtermin (im Jahre 2007 erst im August) könnte etwas früher sein, da auf diese Weise der Nährstoffentzug auf den Flächen höher wäre. Auch sollte zukünftig keine Lagerung von Silageballen über längere Zeiträume mehr im Gebiet vorgenommen werden (wie bis in den Hochsommer 2007 geschehen).

Beim LRT 6212 (Halbtrockenrasen) stellen sich die Verhältnisse nicht so günstig dar, da es an einer kontinuierlichen (Pflege-)Nutzung bislang mangelt. Aus diesem Grund sollte der Fokus der Pflegemaßnahmen innerhalb des FFH-Gebietes zukünftig stärker auf Erhalt und Entwicklung der Halbtrockenrasen gerichtet sein. Im Folgenden sollen nun die Maßnahmen angeführt werden, die dem Erhalt und der Entwicklung des LRT 6212 dienen:

Zunächst sollten die stärker verbuschten Partien in Südexposition vorbehandelt werden, damit in Zukunft eine Schafbeweidung durchgeführt werden kann.

Code	Art der Maßnahme
G01	Entbuschung

Stellenweise gibt es reichlich Gehölzjungwuchs bzw. Verbuschungsansätze durch Weißdorn, Schlehe, Rose, Hartriegel, Schneebeere und andere Gehölzarten. Der Gehölzbewuchs solcher Bereiche sollte (unter Schonung der vereinzelt stehenden Wacholderbüsche) durch wiederkehrendes Zurückschneiden nachhaltig geschädigt werden, wodurch die Flächen in einen besser beweidbaren Zustand versetzt werden und Beeinträchtigungen des LRT 6212 minimiert werden können.

Code	Art der Maßnahme
S08	Beseitigung von Landschaftsschäden

- Beim Rückschnitt von Gehölzen verblieb das Schnittgut teilweise vor Ort oder wurde direkt innerhalb schutzbedürftiger Halbtrockenrasen abgelagert. Diese Gehölzablagerungen sollten sämtlich beseitigt werden.
- Künftig sollte jegliches bei der Pflege oder dem Rückschnitt von Gehölzen anfallende Schnittgut aus dem Gebiet verbracht werden oder an geeigneter Stelle im Winter verbrannt werden.

Code	Art der Maßnahme
N06	Schafbeweidung

- Auf möglichst allen Flächen sollte eine erste Beweidung mit Schafen (und nach Möglichkeit auch anderen Weidetieren, etwa Ziegen) zwischen Mitte Mai und Mitte Juni durchgeführt werden. Damit können die gewünschten Beweidungsziele (maximale Reduktion des Aufwuchses, möglichst umfangreicher Verbiss der zahlreich aufkommenden Junggehölze) am ehesten erreicht werden.
- Alle Flächen sollen im Spätsommer/Frühherbst einem zweiten Beweidungsdurchgang unterzogen werden, wobei hier die Verweildauer wegen der geringeren Phytomasse reduziert werden kann.
- In den Halbtrockenrasen darf keine Nachtpferchung erfolgen. Um die Hütearbeiten zu minimieren, sind hierzu geeignete Flächen in unmittelbarer Nachbarschaft auszuwählen.

Bezüglich der Vorkommen des Esparsetten-Widderchens (Zygaena carniolica) ist zu bemerken, dass die Regeneration der Halbtrockenrasen im Vordergrund steht und auch bei Beweidung der Flächen immer ungenutzte Randbereiche übrigbleiben, in denen die vom Widderchen bevorzugten, im Gebiet trivialen Pflanzenarten wachsen können.

In den LRT *8160 (Kalkschutthalden), 9130 (Waldmeister-Buchenwald) und 9150 (Orchideen-Buchenwald) sind keine Pflegemaßnahmen notwendig. Zumindest Teilflächen der als LRT angesprochenen Waldbestände sollten künftig aus der geregelten forstlichen Bewirtschaftung entlassen werden und sich selbst überlassen bleiben.

8.2 Vorschläge zu Entwicklungsmaßnahmen

Die Karten der Biotoptypen und Nutzungen zeigen, dass sich die Fläche des LRT 6510 noch um einiges vergrößern ließe, sofern die derzeit brachliegenden Flächen ebenfalls genutzt würden. Für diese Flächen gilt die folgende Maßnahme:

C	ode	Art der Maßnahme
A	01	Extensivierung
N	01	Mahd

Bezüglich des Mahdtermins sei auf die entsprechenden Ausführungen in Kap. 8.1 verwiesen.

Code	Art der Maßnahme
N09	Nachbeweidung Schafe

Die bislang von Schafen beweideten Flächen können auch zukünftig – nach einer Mahd – beweidet werden.

Code	Art der Maßnahme
A02	Entwicklungsfläche
N01	Mahd
N06	Schafbeweidung

Die brachliegenden Grünlandbereiche können durch Mahd der Frischwiesen beziehungsweise Schafbeweidung der Halbtrockenrasen zur Flächenausdehnung der LRT beitragen.

Code	Art der Maßnahme
F04	Umwandlung naturferner in naturnahe Waldtypen

Der kleine Bestand aus vorwiegend Robinien am Südrand des Gebietes sollte in der Umgebung entsprechenden Buchenwald umgewandelt werden..

Code	Art der Maßnahme
F05	Förderung naturnaher Waldstruktur
F06	Totholzanreicherung

Alle Buchenwald-LRT-Flächen sollten bezüglich ihrer Habitatausstattung zukünftig aufgewertet werden, indem etwa abgängige Bäume nicht entfernt werden, sondern im Gebiet als Totholz verbleiben.

9. Prognose zur Gebietsentwicklung

Unter der Voraussetzung, dass das Gebiet entsprechend den in den Kapiteln 7 und 8 aufgestellten Leitbildern und Hinweisen zukünftig gepflegt und entwickelt wird, ist gegenüber dem derzeitigen Zustand nicht mit einer Verschlechterung des Gebietszustandes zu rechnen, vielmehr können sogar derzeit nicht FFH-relevante Bereiche als Lebensraum hinzugewonnen werden.

Hinsichtlich des gegenüber anderen Kalkmagerrasengebieten verarmten Arteninventars der Halbtrockenrasen ist allerdings kaum eine Verbesserung des Bestandes zu erwarten, da vergleichbare Bestände in der näheren Umgebung nicht vorhanden sind. Ein Austausch von Diasporen ist lediglich durch Weidetiere denkbar, die zuvor auf artenreichen Kalkmagerrasen geweidet hatten. Weitgehend abgesättigt erscheinen demgegenüber die Glatthaferwiesen, deren Artenbestand bereits nahezu alle relevanten und potentiell zu erwartenden Pflanzenarten aufweist.

Im Einzelnen ergeben sich für die folgende Einschätzungen:

IRT	LRT Wertstufe	Erhaltung	Entwicklung		
			kurzfristig	mittelfristig	langfristig
6212	Α	_	_	_	✓
6212	В	✓	_	✓	_
6212	С	✓	✓	_	_

LRT	Wertstufe	Erhaltung	Entwicklung		
			kurzfristig	mittelfristig	langfristig
6510	А	✓	_	_	√
6510	В	✓	_	✓	_
6510	С	_	_	_	_

LRT	Wertstufe	Erhaltung	Entwicklung		
	1101101010		kurzfristig	mittelfristig	langfristig
*8160	Α	_	_	_	✓
*8160	В	✓	-	_	_
*8160	С	_	-	_	_

LRT	Wertstufe	Erhaltung	Entwicklung		
			kurzfristig	mittelfristig	langfristig
9130	А	_	_	_	✓
9130	В	✓	-	_	_
9130	С	_	_	_	_

LRT	Wertstufe	Erhaltung	Entwicklung		
			kurzfristig	mittelfristig	langfristig
9150	Α	_	_	_	_
9150	В	_	_	_	✓
9150	С	✓	_	_	_

Fauna: Bei Durchführung der vorgeschlagenen Pflege- und Entwicklungsmaßnahmen könnte sich ein breiteres faunistisches Artenspektrum im LRT Kalkmagerrasen ansiedeln.

2007

10. Anregungen zum Gebiet

Um das FFH-Gebiet der Öffentlichkeit bewusst zu machen, wird vorgeschlagen, im Westen des Gebietes eine Hinweistafel auf das FFH-Gebiet aufzustellen, auf der beispielsweise die Biotoptypen sowie einige charakteristische Tier- und Pflanzenarten dargestellt werden. Auch sollten die Erhaltungsziele und die dazu erforderlichen (Pflege-)Maßnahmen genannt werden.

11. Literatur

BELLMANN H. (1993): Heuschrecken beobachten, bestimmen. Naturbuch-Verlag, 349 Seiten, Augsburg.

2007

BINOT M., R. BLESS, P. BOYE, H. GRUTTKE & P. PRETSCHER (1998): Rote Liste gefährdeter Tiere Deutschlands. – Schriftenreihe für Landschaftspflege und Naturschutz **55**, 1–434. Landwirtschaftsverlag GmbH, Münster-Hiltrup.

BOHN U.(1981): Vegetationskarte der Bundesrepublik Deutschland 1:200 000 – Potentielle natürliche Vegetation – Blatt CC 5518 Fulda. – Schriftenreihe Vegetationsk. **15**, 330 Seiten, 6 Karten, 1 Tabelle, Bonn-Bad Godesberg.

BUTTLER K.P., A. FREDE, R. KUBOSCH, T. GREGOR, R. HAND, R. CEZANNE & S. HODVINA (1996): Rote Liste der Farn- und Samenpflanzen Hessens – 3. Fassung; Wiesbaden.

DER RAT DER EUROPÄISCHEN GEMEINSCHAFTEN (1992): Richtlinie 92/43/EWG des Rates vom 21.Mai 1992 zur Erhaltung der natürlichen Lebensräume sowie der wildlebenden Tiere und Pflanzen. Amtsblatt der Europäischen Gemeinschaften, Ausgabe in deutscher Sprache, **35** (**L 206**), 7–50; Luxemburg, 22.Juli 1992 (Fauna-Flora-Habitat-Richtlinie – FFH).

DETZEL P. (1998): Die Heuschrecken Baden-Württembergs. – Ulmer Verlag, 580 Seiten, Stuttgart.

EBERT G. & E. RENNWALD [Hrsg.] (1991): Die Schmetterlinge Baden-Württembergs **1**, **2**, Tagfalter. – Ulmer Verlag, Stuttgart.

EBERT G. [Hrsg.] (1994a): Die Schmetterlinge Baden-Württembergs **3**, Nachtfalter I. – Ulmer Verlag, Stuttgart.

EBERT G. [Hrsg.] (1994b): Die Schmetterlinge Baden-Württembergs **5**, Nachtfalter III. – Ulmer Verlag, Stuttgart.

GRENZ M. & A. MALTEN (1996): Rote Liste der Heuschrecken (Saltatoria) Hessens. 2. Fassung (Stand 1995). – Hrsg.: Hessisches Ministerium des Innern und für Landwirtschaft, Forsten und Naturschutz, Wiesbaden.

HESSISCHES MINISTERIUM FÜR LANDESENTWICKLUNG, WOHNEN, LANDWIRTSCHAFT, FORSTEN UND NATURSCHUTZ (1995): Hessische Biotopkartierung (HB) – Kartieranleitung, 3. Fassung, unveröff., Wiesbaden.

HOFFMANN A. (1987): Pflegeplan für das Naturschutzgebiet "Kalkberg bei Weißenborn". – unveröffentl. Gutachten, Weimar, 64 Seiten, 4 Karten.

KORNECK D., M. SCHNITTLER & I. VOLLMER (1996): Rote Liste der Farn- und Blütenpflanzen (Pteridophyta et Spermatophyta) Deutschlands. – Schriftenreihe Vegetationsk. **28**, 21–187, Bonn-Bad Godesberg.

KRISTAL M. & E. BROCKMANN (1996): Rote Liste der Tagfalter Hessens. 2. Fassung (Stand 1995). – Hrsg.: Hessisches Ministerium des Innern und für Landwirtschaft, Forsten und Naturschutz, Wiesbaden.

LANGE C. & J. ROTH (1999): Rote Liste der Spinner und Schwärmer Hessens. 1. Fassung (Stand 1998). – Hrsg.: Hessisches Ministerium für Umwelt, Landwirtschaft und Forsten, Wiesbaden.

PRETSCHER P. (1998): Rote Liste der Großschmetterlinge (Macrolepidoptera). – In: BINOT M., R. BLESS, P. BOYE, H. GRUTTKE & P. PRETSCHER (1998): Rote Liste gefährdeter Tiere Deutschlands. – Schriftenreihe für Landschaftspflege und Naturschutz **55**, 1–434. Landwirtschaftsverlag GmbH, Münster-Hiltrup

RIECKEN U., U. RIES, & A. SSYMANK (1994): Rote Liste der gefährdeten Biotoptypen der Bundesrepublik Deutschland. – Schriftenreihe für Landschaftspflege und Naturschutz **41**, 1–184, Bonn.

RÜCKRIEM C. & S. ROSCHER (1999): Empfehlungen zur Umsetzung der Berichtspflicht gemäß Artikel 17 der Fauna-Flora-Habitat-Richtlinie. – Angewandte Landschaftsökologie **22**, 1–456, Bonn-Bad Godesberg.

2007

SSYMANK A., U. HAUKE, C. RÜCKRIEM & E. SCHRÖDER (1998): Das europäische Schutzgebietssystem NATURA 2000. – Schriftenreihe für Landschaftspflege und Naturschutz **53**, 1–560, Bonn-Bad Godesberg.

VERORDNUNG ZUM SCHUTZ WILDLEBENDER TIER- UND PFLANZENARTEN – Bundesartenschutzverordnung BArtSchV vom 14.10.1999 (Stand 2002), BGBI. I 1999, 1961 – 1985.

ZUB P. & P. KRISTAL (1996): Rote Liste der Widderchen Hessens. 1. Fassung (Stand 1995). – Hrsg.: Hessisches Ministerium des Innern und für Landwirtschaft, Forsten und Naturschutz, Wiesbaden.

12. Anhang

12.1 Ausdrucke der Reports der Datenbank

- Artenliste des Gebietes (Dauerbeobachtungsflächen, LRT-Wertstufen und Angaben zum Gesamtgebiet)
- Dokumentation der Dauerbeobachtungsflächen / Vegetationsaufnahmen
- Turnus der Wiederholungsuntersuchung
- Liste der LRT-Wertstufen
- Bewertungsbögen des Erhaltungszustandes der LRT

12.2 Fotodokumentation

12.3 Kartenausdrucke

- 1. Karte: FFH-Lebensraumtypen in Wertstufen, inkl. Lage der Dauerbeobachtungsflächen
- 2. Karte: Biotoptypen, inkl. Kontaktbiotope (flächendeckend; analog Hess. Biotopkartierung)
- 3. Karte: Nutzungen (flächendeckend; analog Codes der Hess. Biotopkartierung)
- 4. Karte: Beeinträchtigungen für LRT, Arten und Gebiet (analog Codes der Hess. Biotopkartierung)
- 5. Karte: Vorschläge zu Pflege, Erhaltungs- und Entwicklungsmaßnahmen für LRT, Arten und ggf. Gebiet, inkl. HELP- Vorschlagsflächen
- 6. Karte: Punktverbreitung bemerkenswerter Arten (fakultativ)

12.4 Gesamtliste bemerkenswerter Tier- und Pflanzenarten